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« Numerous works have addressed atrial

 No common procedure to test atrial fibrillation

Introduction \

arrhythmogenicity of a given
electrophysiological model using different
methods to initiate and maintain re-entrant
activity.

vulnerability in silico has yet been defined.
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k Monodomain model

a

\ monodomain simulation [4].

Atrial model

« Tetrahedral mesh with 0.33 mm of average \
edge length (11,205,866 elements)

* Fibre orientation given by a semi-automatic rule-
based algorithm [1]

« Courtemanche atrial fibrillation remodelled in 9
regions with different conduction velocities [2]

« With fibrotic tissue (wF) and without fibrotic
tissue (noF) in circular left atrium regions with
radius of ~7 mm
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Arrhythmia initiation

S1-S2: Continuous beating from the sinus nod)
and rapid extrastimulus pacing from the rim of
one of the four pulmonary veins (PVs) [3].

* Phase singularity distribution: Placing phase
singularities in the atria, estimating an

activation time map solving by the Eikonal
equation and using this as initial state for the
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Fibrotic tissue

Transmembrane potential (in mV)
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Without fibrotic tissue

Duration of arrhythmic activity with
phase singularity placed at this point:

Phase singularity distribution

With fibrotic tissue

B <2000ms
B =2500 ms
B =5000ms

Duration (in ms) of re-entrant
activity starting from initial states
with 3 phase singularities set in
points P2, P3, P6. The simulation
time window was 5000 ms.

P2, P3, P6 5000 5000
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Fibrotic tissue
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Duration of arrhythmic activity

Maximum coupling interval for which a re-
entrant activity was initiated

LIPV: Left inferior pulmonary vein
LSPV: Left superior pulmonary vein
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and the first pulmonary vein
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The simulation time window Em_ 0 0 0 900 0 900 0 500
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RIPV: Right inferior pulmonary vein
RSPV: Right superior pulmonary vein
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* The inclusion of fibrotic tissue in the atrial model increased the inducibility time window with the S1-S2 protocol. Therefore, initiation of re-entrant cardiac
propagation with the S1-S2 protocol is easier in the atrial model including substrate modification.
* Initiation of re-entrant drivers is not different taking into account the inclusion or not of fibrotic tissue in the atrial model using the phase singularity distribution

method.

Conclusion

* Maintenance of re-entries generated with the S1-S2 method is in most of the cases longer in the atrial model including fibrotic tissue.

* No re-entrant activity was sustained for the whole simulation time window with the S1-S2 protocol using the atria model without fibrotic tissue.

* Maintenance of re-entries generated with the phase singularity method is equal in the atrial model including fibrotic tissue exception for one point.
* Both protocols show a greater vulnerability to arrhnythmic activity of the atrial model with fibrotic tissue areas.
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